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Abstract—In this paper, we present a numerical 

approach to solve the GNLSE and analyze soliton 

interaction phenomena using COMSOL environment. 

By leveraging the capabilities of COMSOL's PDE 

module, we  can accurately capture the dynamics of 

solitons and investigate their interactions. We analyze 

the impact of different parameters such as soliton 

power, initial separation distance, and dispersion 

characteristics on the soliton dynamics. Furthermore, 

we examine the role of higher-order dispersion terms 

in shaping the soliton interactions. Our findings 

demonstrate the effectiveness of the proposed 

numerical approach in accurately simulating and 

analyzing soliton interaction phenomena. The 

COMSOL-based methodology provides a flexible and 

efficient framework for studying complex nonlinear 

optical systems, enabling researchers to gain insights 

into the behavior of solitons in different media and 

design optimized communication systems. This paper 

contributes to the understanding of soliton dynamics 

and provides a practical tool for investigating the 

behavior of solitons in nonlinear dispersive media. The 

presented numerical approach using COMSOL opens 

avenues for further research in nonlinear optics and 

fiber optic communication systems. 

 

Keywords— FEM, higher order nonlinearity, soliton 

interaction, optical fibers. 

 

 

I. INTRODUCTION  

       Fiber solitons are fascinating phenomena that occur in 

optical fibers, which are long, thin strands of glass or 

plastic used to transmit information in The form of light 

pulses. Solitons are self-sustaining, localized wave 

packets that retain their shape and velocity as they 

propagate through a medium [1]. In the context of fiber 

optics, fiber solitons are special types of optical solitons 

that form due to a delicate balance between the dispersive 

and nonlinear properties of the fiber [2]. Dispersion refers 

to the spreading out or broadening of an optical pulse as it 

travels through the fiber, while nonlinearity represents the 

dependence of the fiber's refractive index on the intensity 

of the light passing through it [3]. When these two 

opposing effects interact in the right manner, a fiber 

soliton can be generated. The nonlinear nature of the fiber 

causes the light pulse to self-focus, compensating for the 

dispersive effects and preventing the pulse from 

dispersing or spreading out over long distances [4,5]. This 

ability to maintain its shape and size enables the soliton to 

travel long distances without significant distortion. [6].  

         Stimulated Raman scattering (SRS) is a nonlinear 

optical process that occurs in fiber due to the interaction 

between the intense optical pulse and the molecular 

vibrations of the fiber material [4]. It leads to the transfer 

of energy from the soliton to lower-frequency components 

through the generation of new frequencies via Raman 

amplification. As a result, the soliton experiences energy 

loss and spectral broadening. SRS can limit the distance 

over which solitons can propagate without significant 

degradation, and it becomes more pronounced as the 

power or duration of the soliton increases [7]. Self-

steepening (SS) is a phenomenon that arises from the 

nonlinear nature of the fiber medium. It causes the leading 

edge of the soliton to propagate faster than the trailing 

edge, resulting in a steepening of the pulse shape during 

propagation [8]. This effect leads to spectral broadening 

and an increase in the peak power of the soliton [4]. SS 
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can affect the stability and duration of the soliton, and it 

becomes more prominent for shorter duration pulses. 

Dispersion is the phenomenon where different spectral 

components of an optical pulse travel at different speeds, 

causing pulse broadening. Third-order dispersion (TOD) 

refers to the variation of the dispersion with wavelength 

[2,4]. In the context of fiber solitons, it can introduce 

temporal oscillations and affect the pulse duration and 

shape. TOD can counteract the self-focusing effect of the 

fiber nonlinearity, making it more challenging to maintain 

soliton propagation over long distances [2]. Compensation 

techniques, such as dispersion management, can be 

employed to mitigate the adverse effects of TOD [9]. It's 

important to note that these effects do not completely 

destroy the soliton's properties, but they can modify its 

characteristics and impose limitations on its propagation 

distance and stability. Researchers and engineers working 

with fiber solitons need to carefully consider and manage 

these effects to optimize soliton-based communication 

systems and ensure reliable data transmission over long 

distances [6,7].  

          In this paper, we will solve the generalized 

propagation equation involving SRS, SS, and TOD effects 

using the COMSOL environment and we will highlight 

the evolution of the soliton and the interaction of the 

soliton and show the effects of the soliton order. 

II. GENERALIZED NONLINEAR SCHRODINGER 

EQUATION 

          The Generalized Nonlinear Schrödinger Equation 

(GNLSE) is a theoretical description used to study the 

propagation of optical pulses in nonlinear optical fibers. It 

is an extension of the Nonlinear Schrödinger Equation 

(NLSE) that takes into account additional effects such as 

higher-order dispersion, SS and SRS. The GNLSE can be 

written as [3,4,10-13] 
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where ( , )A z T  is the slowly varying electric field 

envelope of the optical pulse, z is the propagation 

distance, T  is the pulse time, n  represents the nth-order 

dispersion coefficient, the parameter   represents the 

fiber attenuation,   is the nonlinearity coefficient, 

1/s ow   and R  is the characteristic time for the SRS. 

The parameters 2  stands for group velocity dispersion 

(GVD) and the higher-order dispersion terms ( 3 4,  , 

etc.) capture the effects of group velocity dispersion 

beyond the second order. The right-hand side models 

nonlinear effects, where the first term on the right 

represents the Kerr nonlinearity, which describes the 

intensity-dependent refractive index of the medium. It 

leads to self-phase modulation (SPM) and self-focusing or 

self-defocusing effects, depending on the sign of 

nonlinearity parameter. The first time derivative term 

represents the dispersion of the nonlinearity, i.e. SRS, 

while the second derivative term usually associated with 

effects such as SS and optical shock formation [14,15]. 

This equation was solved numerically, and it is the 

required to study the soliton in optical fibers. Numerical 

methods such as split-step Fourier methods or finite-

difference methods are commonly used to solve the 

GNLSE and obtain the pulse evolution in nonlinear 

media. These well-known methods have drawbacks such 

as the long period of calculations and the associated 

inaccuracy. In this research, we prepared a COMSOL 

environment to solve the equation, which is characterized 

by fast completion and higher accuracy. For pulses of 

width 5T ps , the parameters 
1( )o ow T 

 and /R T  

become so small,  such that the last two terms in Eq.(1) 

can be neglected. As the contribution of the third order 

dispersion is also quite small for such pulses one can 

employ the reduced NLSE [1,16].  

 

III. THE NORMALIZED GNLSE 

When discussing the soliton problem, it is best to 

work on a normalized propagation equation. In order to 

obtain this equation that is without units, we will perform 

the following transformations [4,17] 
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onto Eq.(1), keeping only the second and third terms of 

dispersion, and neglecting the attenuation, to get [3] 
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where P  is the initial power, DL  is the dispersive length, 

NLL  is the nonlinear length, oT  is the pulse width and 

2( ) 1sgn    for normal GVD. The parameters  
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govern, respectively, soliton order, the effects of TOD and 

SS. The symbol /R R oT T   stands for intrapulse SRS 

[18]. All three parameters 3 , , Rs T  vary inversely with 

pulse width and are negligible for 1oT ps but they 

become appreciable for femtosecond pulses [13]. The 

GNLSE describes both bright solitons and dark solitons, 

where 2sgn( )  is the sign GVD that can obtain bright 

and dark soliton by changing the sign. Bright soliton 

corresponds to the solutions of Eq.(2) with 2sgn( ) 1   

and occur in normal GVD region of fibers. Similar dark 

solitons, correspond to solution of Eq.(2) with 

2sgn( ) 1    and occur in the anomalous GVD region 

of fibers. The main difference compared with case of 

bright solitons is that ( )u   becomes a constant (rather 

than being zero as | |    ) [19,20]. In general, the 

mathematical form of the hyperbolic secant pulse is [4]    
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 (0, ) sec                                                                 (3)
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where C is the initial chirp, / oT T   and T  is the half 

width (at 1/ e intensity point). T  is often replaced with 

the full width at half maximum (FWHM), where  

1.763FWHM oT T  [2,3].  

IV. SOLITON INTERACTION     

The time interval between two neighboring pulses 

sets the bit rate of a communication system. It is thus 

important to determine how close two solitons can come 

without affecting each other. Interaction between two 

solitons has been studied numerically. It is clear on 

physical grounds that two solitons would being to affect 

each other only when they are close enough that their tails 

overlap. Numerical solutions of the GNLSE are quite 

instructive and allow exploration of different amplitudes 

and different phases associated with a soliton pair by 

using the following form at the input end of the fiber [1,5]  

     

(0, ) sech( )  sech[ ( )]e                                 (4)iu q r r q      

 

where r is the relative amplitude,   is the initial phase 

difference and 2q  is the initial separation between the 

two solitons. There are different types of solitons 

interactions. Soliton collision happened between two 

hyperbolic secant fields to collide both in linear medium 

and interesting nonlinear medium (soliton collision), 

soliton attraction will be happening in which two 

hyperbolic secant fields as before, but with nonlinear 

phase. In other, the hyperbolic secant pulses are 

propagated parallel to each other soliton repulsion is 

implemented by making one of two hyperbolic secant 

fields out of phase with respect to other [20].  

V.  RESULTS AND DISCUSSION  

The soliton phenomenon is investigated based on 

the medium used for its transmission, as the propagation 

equation varies depending on the specific medium. When 

studying solitons through optical fibers, researchers 

typically examine the simplified form by considering the 

effects of GVD and SPM alone. Alternatively, they may 

also incorporate the influences of stimulated Raman 

scattering (SRS) and self-steepening (SS). In all cases, the 

soliton order is the predominant factor, determined by 

several variables: initial pulse width, GVD, initial power, 

and nonlinearity factor.  In the generalized propagation 

equation, there exist additional influential factors that 

affect solitons, namely: initial chirp, SRS, SS and TOD. 

These factors come into play when the initial pulse width 

is on the order of 20 ps. During the study of soliton 

interaction, other factors are considered, such as the 

amplitude ratio, time interval between adjacent solitons, 

and phase difference between them. Even slight variations 

in these factors over small scales can have significant 

effects on soliton propagation. All simulations were 

performed by solving the propagation equation using the 

COMSOL environment based on FEM. The smoothness 

of the resulting figures depends on the mesh size. A 

smaller mesh size can lead to delays in computer 

processing and affect the accuracy of the results. 

Conversely, using a larger mesh size can have the 

opposite effect. To strike a balance between screen size 

and result accuracy, we selected an appropriate mesh size. 

During the simulation, we study the change of ( , )u    

under the effects of: soliton order N , the normalized 

pulse width   of the hyperbolic sec or Gaussian pulses, 

the sign of GVD, the effect of TOD 3 , the effect of SRS 

RT  , the effect of SS, s , and the normalized propagation 

length / Dz L  . We will also study the effects of the 

initial chirp on the propagation of the soliton pulse.  

Figure 1 to 4 represent soliton propagation 

through an optical fiber in the absence of TOD, SS, and 

SRS for the cases 1,2,3N   respectively, at zero chirp, 

where the left subfigure indicates the soliton propagation 

spectrum and the right subfigure indicates the pulse shape 

at different distances for the hyperbolic sec input pulse 

case. Figure 1 represents the ideal case (fundamental 

soliton), 1N  . Notice that the soliton maintains its 

shape and intensity for any distance, or that it achieves the 

property of perfect balancing between nonlinearity and 

dispersion effects. This case is favorite in optical 

communication system. Figure 2 represents the case 

2N  , it appears that the intensity increases to a 

maximum value and then decreases to a minimum value 

with the distance, and this is repeated periodically with 

distance. The pulse is compressed and its intensity 

increases at some distances, then it returns to the original 

shape again. Also, the pulse shape will suffer from 

distortions. This periodicity may also be useful in some 

optical communication system. Figure 3 represents the 

case 3N  , it appears that the evolution of the soliton 

through the optical fiber will initially lead to an increase 

in intensity in the center of the pulse, then the pulse splits 

into two parts with a decrease in intensity, then returns 

again to form a single pulse, and this behavior continues 

periodically. The shape of the pulse suffers from 

significant changes due to the propagation. The 

periodicity distance that was achieved in Figure 3 is less 

than that achieved in Figure 2. That is, an increase in the 

periodic distance means that the shape of the pulse is 

stable for a greater distance and vice versa. Figure 4 

represents the case when 4N  . The pulse initially 

suffers from compression and an increase in intensity, 

then it splits into two identical parts that diverge with 

increasing distance and the shape of the pulse suffers from 

major distortions. For larger propagation distances, 

periodicity can also be achieved, which is not shown 

during the figure. For all Figures 1 to 4, we know that the 

interaction between nonlinearity and dispersion dictates 

the resulting behavior of the pulse during propagation. 

Since the nonlinearity increases with the increase in the 

input power, and in turn the increase in the soliton order, 

it is natural that this balance will be difficult to verify with 

the higher-order solitons except after larger propagation 

distances. 
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Figure 1: pulse evolution for N=1  soliton at zero chirp 

 

 

 
Figure 2: pulse evolution for N=2 soliton at zero chirp 

 

 

 

 
Figure 3: pulse evolution for N=3 soliton at zero chirp 

 
 

 

 
Figure 4: pulse evolution for N=4 soliton at zero chirp 

 

Figures 5 and 6 obtains the soliton evolution with 

distance for the soliton orders 1, 2N  , respectively, in 

the absence of SS and TOD, where the left subfigure 

indicates the case 0.1RT   and the right subfigure refers 

to the case 0.3RT  . Figure 5 shows the fundamental 

soliton that the effects are represented by a very small 

deviation to right in case 0.1RT  , and a larger 

deviation to right and decrease in the value of the pulse 

intensity in case 0.3RT  . These effects are not evident 

except with a large diffusion distance up to 3  . 

Figure 6 represents case 2N  , where the amount of 

input power increased, and this caused a large deviation of 

the pulse center and a decrease in the pulse intensity in 

case 0.1RT  . In the case 0.3RT  , a large distortions 

and broadening of the pulse will appear, in addition to the 

deviation to the right. These changes occur here in a less 

propagation distance 1.8  .  

Figures 7 and 8 shows the pulse shape at different 

distances in absence the SS and TOD effects for the cases 

1, 2N  , respectively, where the left subfigure indicates 

the case 0.1s   and the right subfigure refers to the case 

0.3s  . Figure 7 represents the fundamental soliton, in 

case 0.1s  , the peak of the pulse shows a small shift to 

the right that increases with distance. The reality of the 

case is that the displacement means an increase in the 

steepening of the leading edge of the pulse. In case 

0.3s  , the steepness of the leading edge increases but 

the pulse base maintains the same time period. Here, it 

appears as if its peak has received a push to the right, 

which explains the physical meaning of SS. Figure 8 

represents case 2N  . It appears from the figure that the 

irregularity is lost with the increase of the distance, as the 

propagated pulse suffers from shifts and distortions, in 

addition to the occurrence of SS. An increase in SS causes 

an increase in shifts and distortions. Generally, the 

periodicity loses in all cases. 

 

 
Figure 5: pulse evolution for N=1  soliton at 

30, 0s    and 

0.1,0.3RT  , respectively  

 
Figure 6: pulse evolution for N=2  soliton at 

30, 0s    and 

0.1,0.3RT  , respectively  

 

Figures 9 to 12 represents the pulse shape at 

different propagation distances for cases N=1,2, 

respectively, where the left subfigure indicates 

3 0   and the right subfigure indicates 

3 0.002  . Figure 9 represents case N=1 did not 

show significant changes in the shape of the pulse 

and periodicity can be kept. We did not notice a 

difference between the two cases 3 0,0.002  . 
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Figure 10 represents the case N=2. Here, there are 

significant effects in the shape of the pulse, and 

there are no displacements or changes in the slope of 

the leading edge of the pulse. Note that there are 

very slight differences due to the change in δ3. 

 

 

 
Figure 7: pulse evolution for N=1  soliton at 

30, 0RT    and 

0.1,0.3s  , respectively 

 

 

 

Figure 8: pulse evolution for N=2  soliton at 
30, 0RT    and 

0.1,0.3s  , respectively  

 

 

Figure 11 represents the pulse shape for several 

distances in case N=1 at 3 0.002  , where the left 

subfigure indicates case 0.1RT   and the right subfigure 

indicates case 0.3RT  . By comparing Figure 11 with 9 

the effect of adding SRS is clear, as the center of the pulse 

will shift to the right with increasing distance and this 

displacement increase with the value of RT . Figure 12 

represents the pulse shape for several distances for case 

N=2 at 3 0.002  , where the left subfigure indicates 

case 0.1RT   and the right figure indicates case 

0.3RT  . Comparing Figure 12 with 10, we note that 

the pulse suffers from higher distortions and shifts 

proportional to the propagation distance by introducing 

the TOD effects.  

 

 

Figure 9: pulse evolution for N=1 soliton at 0, 0RT s   and 

3 0,0.002  , respectively 

 
Figure 10: pulse evolution for N=2 soliton at 

0, 0RT s   and 
3 0,0.002  , respectively  

 

Figures 13 to 21 represent the soliton pair 

propagation spectrum for the case N=1,2,3, respectively, 

at the conditions 30, 0, 1RC s T r       , 

where the different subfigures indicate to the values 

2,2.5,3q  . We notice from Figure 13 that the soliton 

pair gets closer together with the evolution in distance to 

from a single pulse of greater intensity. The distance 

required for the solitons union increases with increase of 

q, as it was 4.5   at q= 2, 8   at q=2.5 and 

13.5  at q=3. Physically, the interaction with distance 

increases when the soliton pair appoaches each other, and 

then the solitons separate to achieve periodic behavior as 

long as N=1.  Figure 14 represents the case N=2. We 

notice that the periodic behavior remains regular, but a 

decrease in q causes an increase in the interaction between 

the pair of solitons. The increase in interaction is 

accompanied by the generation of a secondary pulse 

between the pair of input pulses. Figure 15 represents the 

case N=3. It shows the interaction between the solitons 

with distance, and this interaction appears with less effect 

with increasing q. Searching for periodicals needs to work 

in larger propagation distances.  

 

 
Figure 11: pulse evolution for N=1  soliton at 

30, 0.002s    

and 0.1,0.2RT  , respectively 

 
 

 
Figure 12: pulse evolution for N=2  soliton at 

30, 0.002s    

and 0.1,0.2RT  , respectively 
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Figure 13: soliton interaction for N=1 at 

3 0, 1Rs T r       for many values of q
 

 
 

 
Figure 14: soliton interaction for N=2 at 

3 0, 1Rs T r       for many values of q
 

 

 
Figure 15: soliton interaction for N=3 at 

3 0, 1Rs T r       for many values of q   

 

Figure 16 represents the propagation spectrum of 

the pulse at N=1, q=2 and 0   without higher order 

nonlinear effects of the cases r= 1, 1.1, 1.2. It is clear from 

the figure that cases r=1, is the same as Figure 13 but 

cases r= 1.1, 1.2, will cause the power to be transferred to 

the pulse of greater intensity and the soliton pair union 

issue will disappear here compared to case r=1. Figure 17 

it represents the propagation spectrum of the pulse at N=1, 

q=2 and r=1, in the absence of high order nonlinear 

effects for the cases ϕ=-π/4, 0, π/4. The case 0   

similar to the previous figure, but if it is / 4   then 

the delayed pulse will increase in intensity at the expense 

of the advanced pulse, while in the case of  / 4   , 

the opposite will happen. In both cases, the periodic 

behavior will not appear clearly.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: soliton interaction for N=1 at 

3 0, 2Rs T q       for many values of r   

 

 
 

 
Figure 17: soliton interaction for N=1 at 

3 0, 2, 1Rs T q r      for many values of 
 

 

 

Figure 18 obtains the soliton N=1, 3 0RT   , 

q=2, r=1 and ϕ=0 for the cases s=0, 0.1, 0.2, respectively. 

The cases s=0, 0.1, it is not different from the previous 

figure, but increasing s will cause the energy to transfer 

from one pulse to another with a rightward shift of the 

center of the interacting solitons. Figure 19 represents the 

case at N=2, 3 0s   , q=2, r=1 and 0   for the 

cases 0.1,0.2,0.3RT  , respectively. It is clear from 

the figure that the energy is transformed from the 

advanced pulse to the delayed pulse, and the amount of 

energy converted increases with the increase of  RT . As 

well as, the deviation of the center of the interacting 

solitons also increases with RT .  

 

Figure 18: soliton interaction for N=1 at 

3 0, 2, 1, 0RT q r       for many values of s  
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Figure 19: soliton interaction for N=1 at 

3 0, 2, 1, 0s q r       for many values of RT  

 

Figure 20 shows the soliton N=3, 0RT s  , 

q=2, r=1 and ϕ=0 for cases 3 0,0.001,0.002  , 

respectively. At 3 0   the pulse pair will interact to 

merge through a certain distance and then separate with 

and presence of two weak pulses out of context of the 

soliton pair. When 3 0  , the merging and splitting 

mechanism will not fully occur and the periodic behavior 

will be lost. 

 

 
Figure 20: soliton interaction for N=3 at 

0, 2, 1, 0Rs T q r       for many values of 3  

 

VI. CONCLUSIONS  

          The presence of third-order dispersion, SRS, and 

self-steepening significantly affect the properties of both 

fundamental solitons and higher-order solitons. These 

effects can cause temporal broadening or compression, 

spectral broadening due to energy transfer, and pulse 

reshaping. The fundamental soliton stands out for its 

ability to maintain its shape without undergoing any 

changes during propagation. The stability of the 

fundamental soliton is a result of the delicate balance 

between the nonlinear and dispersive effects, which are 

carefully engineered in optical fiber systems. However, it 

is important to note that in certain scenarios, solitons may 

exhibit periodic behavior with variations in their shape 

and characteristics. The periodicity of solitons depends on 

specific conditions such as the magnitude of nonlinearity, 

dispersion coefficients, and initial conditions. 

Understanding and controlling these phenomena are 

crucial for applications in nonlinear optics and fiber optics 

communication systems. These variations can be observed 

in higher-order solitons or solitons propagating in 

dispersive media, where the interplay between 

nonlinearity and dispersion leads to more complex 

dynamics. 
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